
PUBLIC ACCESS

CYBERSECURITY AUDIT
REPORT
Version 1.2

This document details the security re-evaluation peformed by CyStack on behalf of Busy Technology

s.r.o. from 12/08/2022 to 16/08/2022.

Prepared for

Busy Technology s.r.o.

Prepared by

Vietnam CyStack Joint Stock Company

© 2022 CyStack. All rights reserved.

Portions of this document and the templates used in its production are the property of CyStack and cannot be copied (in full

or in part) without CyStack’s permission.

While precautions have been taken in the preparation of this document, CyStack the publisher, and the author(s) assume no

responsibility for errors, omissions, or for damages resulting from the use of the information contained herein. Use of

CyStack’s services does not guarantee the security of a system, or that computer intrusions will not occur.

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Contents

1 Executive Summary 4

1.1 Key Findings . 4

1.2 Limitations . 4

1.3 Assessment Components . 5

2 Methodology 7

3 Dashboard 9

4 Recommendations 10

5 Code Review Details 11

5.1 Steps to Conduct . 11

5.2 Results . 11

5.2.1 Overview on Busy Technology system . 11

5.2.2 Static analysis . 14

5.2.3 Manual reviews . 14

6 Vulnerability Details 15

7 Appendix 19

Appendix A – Vulnerability Severity Ratings . 19

Appendix B – Vulnerability Categories . 20

Appendix C – Security Assessment For Source Code Review 21

© 2022 CyStack. All rights reserved. 1

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Confidentiality Statement

This document is the exclusive property of Busy Technology s.r.o. (Busy Technology team) and

CyStackVietnamJoint StockCompany (CyStack). This document contains proprietary and confidential

information. Duplication, redistribution, or use, in whole or in part, in any form, requires consent of

both Busy Technology s.r.o. and CyStack.

CyStack may share this document with auditors under non-disclosure agreements to demonstrate

security audit requirement compliance.

Disclaimer

A security audit is considered a snapshot in time. The findings and recommendations reflect the

information gathered during the assessment and not any changes or modifications made outside of

that period.

Time-limited engagements donot allow for a full evaluationof all security controls. CyStackprioritized

the assessment to identify theweakest security controls an attackerwould exploit. CyStack recommends

Busy Technology conducting similar assessments on an annual basis by internal or third-party assessors

to ensure the continued success of the controls.

Version History

Version Date Release notes

1.0 04/06/2022 CyStack sent a report with 2 found issues and other

recommendations to improve the general security

posture of Busy Technology s.r.o.’s products.

1.1 13/08/2022 CyStack retested and confirmed that all found issues were

resolved and all recommendations were applied by Busy

Technology s.r.o..

1.2 23/08/2022 Busy Technology s.r.o. confirmed to publish the audit

report publicly.

© 2022 CyStack. All rights reserved. 2

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Contact Information

Company Representative Position Email

Busy Technology Robert Michálek CTO michalek@busy.technology

Busy Technology Vladimír Lieger CEO lieger@busy.technology

CyStack Vo Huyen Nhi Sales Manager nhivh@cystack.net

Auditors

Fullname Role Email address

Nguyen Huu Trung Head of Security trungnh@cystack.net

Nguyen Trung Huy Son Auditor

Vu Hai Dang Auditor

Ha Minh Chau Auditor

Nguyen Van Huy Auditor

Nguyen Ba Anh Tuan Auditor

© 2022 CyStack. All rights reserved. 3

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Executive Summary

From 04/05/2022 to 04/06/2022, Busy

Technology engaged CyStack to evaluate the

security posture of its infrastructure compared

to current industry best practices. This security

audit is chiefly based on Source Code Review

methodology. Conducted security assessments

in this audit project strictly follows OWASP Code

Review Guide and customized test cases from

CyStack.

CyStack’s security assessment for Busy

Technology s.r.o. focused on evidence, which

confirmed that Busy Technology properly

functions as a decentralized distributed solution

leveraging blockchain technology. The

assessment emphasized remediation over

analyzing exploitability, including issues reported

by tools. This means that less time was spent

determining how specific security flaws might

be exploited and more time identifying as

many possible security issues and associated

remediation as time allowed. The audit results

also included a cursory review of dependent

libraries and recommendations for improving

software assurance practices at Busy Technology.

1.1 Key Findings

CyStack did not find any proves that indicates

vulnerable usage and storage of users’ wallet

private keys in Busy Technology platform, nor

any critical severity issues that would undermine

the security of confidential transactions. CyStack

identified only few of missing input validations.

Key findings from the engagement included:

• Missing input validation for the variable

token in the functionbusyVoting:CreatePool

• Missing input validation for the variable

token in the functionbusyVoting:CreateVote

1.2 Limitations

Because of the quantity of static and dynamic

analysis diagnostics, some findings were not

fully analyzed during the assessment and

some security vulnerabilities in third-party

open source library dependencies might

have not been discovered. Some effort was

redirected to propose detailed remediation to

the development team to ensure that the repairs

would be made before the initial release of the

product.

© 2022 CyStack. All rights reserved. 4

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

1.3 Assessment Components

Source Code Review

Source code contains themost detailed information about an application. Source code review allows

security researchers to understand thoroughly howanapplicationoperates andperforms. Researchers

then can search for design flaws and security vulnerabilities in the application.

The safety and security assessment for application source code includes automated andmanual tests.

For automated tests, static code analysis tools are used to identify dead code, unsafe coding patterns

and the usage of libraries or plugins with publicly known vulnerabilities. Automated tests also search

for the the existence of hard-coded sensitive information such as passwords, database connection

strings, private keys for third-party services, etc.

Manual tests focus on analyzing the implementationof the application’s operational logic and functional

components, in order todetect critical vulnerabilities, which arepossibly related to user input validation,

unsafe database querying, unsafe file handling, etc. or business logic flows. People who perform

manual tests are security researchers.

Scope

Assessment Details Type

Initial targets

Source Code Review BusyAPI Source code

Source Code Review BusyChaincode Source code

Source Code Review BusyEvents Source code

Source Code Review BusyNetwork Source code

Re-evaluated targets

Source Code Review BusyAPI Source code

Source Code Review BusyChaincode Source code

Source Code Review BusyEvents Source code

Source Code Review BusyNetwork Source code

© 2022 CyStack. All rights reserved. 5

https://github.com/busy-technology/BusyApi/tree/edb88825caf7639748a5a67083d9b3562fbd6062
https://github.com/busy-technology/BusyChaincode/tree/14b1de5ae62a13d19e86dc6b89ecf1913ee7f825
https://github.com/busy-technology/BusyEvents/tree/9ba46d553aa07bfdc2d8acc0c67c2a21646305bf
https://github.com/busy-technology/BusyNetwork/tree/15c34f9ee05e34f154afae6b0c1a21f6a2511304
https://github.com/busy-technology/BusyApi/tree/f850781c1582c6d3d3c2127dfb6e0b78c42d3057
https://github.com/busy-technology/BusyChaincode/tree/820cc5f3a5729a1540920c6e6cff2217e35588bf
https://github.com/busy-technology/BusyEvents/tree/18c625cb4460ccfed3f2eccc79ddfa22f792a9a2
https://github.com/busy-technology/BusyNetwork/tree/f2d7e08a8e9fa9155a649590129032d63f04efac

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

During the audit project, there were two minor changes in repository BusyAPI and BusyChaincode,

respectively:

• Fixing get Transactions and Removing UpdateTransferFees (1);

• Removing Update Transfer Fee function (2).

These modifications were accepted by CyStack and were checked in the audit project.

Scope Exclusions

Any other repositories that not listed in the table Scope.

Client Allowances

Busy Technology provides guidance on BusyNetwork installation and public BusyAPI documentation.

© 2022 CyStack. All rights reserved. 6

https://github.com/busy-technology/busy-api/pull/42/commits/86c1b0cfcae1e898730afc627a999e4cc1cb9d7f
https://github.com/busy-technology/busy-chaincode/pull/35/commits/27c0cc16fe030d91f353c6ce3f01d81d790172da

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Methodology

CyStackperforms a two-part for an application SourceCodeReview. The first part is an implementation

review. During this part, CyStack focuses on validating specifications from the applicationdocumentation

adhered to its implementation. Also, issues related to cryptography and performancewill be carefully

looked for. The second part is a source code review for vulnerabilities using static and dynamic

analysis and fuzz testing. According to the security issues, found from automated and manual tests,

CyStack then reproduces concrete test-cases for each to verify whether these issues are vulnerabilities

anddecide their severity levels. In the secondpart, security errorswithin the application implementation,

for example, stack-based buffer overflows, data races, memory use-after-free issues, memory leaks,

runtime error conditions, and business logic circumventions, will be researched. In addition, the

review includes a cursory assessment of dependent third-party open source-code libraries used in

the application. From the audit results, CyStack supports the developer team to understand the root

causes, as well as provides the developers solutions to prevent the repetition of similar bugs and

vulnerabilities and other recommendations for improving software assurance practices. We aim to

provide the most complete and timely support to the developer team to ensure that the application

source code is always up to themaximum level of safety. The process for Review Source Code service

from CyStack involves seven (7) main steps as follows:

Phase 1: Preparation

CyStack worked with Busy Technology s.r.o.

to clarify targets for the Source Code Review

assessment, identify types of vulnerabilities,

which are most important to them and

understand the goal of this assessment. This

collaborative process was used to:

• Gain an overview of the application

• Develop scope for the engagement

• Determine a sufficient testing window

• Determine the risk levels associated with

each asset

• Gather shareable documentation covering

the implementation of application

• Identify the areas of scopes that

researchers should pay special attention

to

• Identify what types of vulnerabilities that

the customer is most interested in testing

for

Phase 2: Discovery

CyStack performs a preliminary review of the

source code and compares implementations in

the source code with technical specifications or

documentation provided by Busy Technology

s.r.o. to clarify the features, logic and operating

procedures of the application, application type,

languageor framework. application deployment,

application design and available security

mechanisms, etc. CyStack will communicate

directly with Busy Technology s.r.o. throughout

this period.

Phase 3: Automatic source code analysis

After the above two stages, CyStack conducts

automatic analysis and scanning of the source

code provided with available and self-developed

tools. The results of automatic analysis of the

source code show preliminary weaknesses as

well as possible vulnerabilities in the source

code. In addition, identifying application entry

points, third-party libraries or plugins used in

the application, or the existence of sensitive

© 2022 CyStack. All rights reserved. 7

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

information (such as passwords, database

connection strings, etc.) data, private keys for

APIs or third-party services) are stored directly on

the system.

Phase 4: Threat modelling

On the basis of gathered information, CyStack

implements threat modelling to the application.

Threat modelling includes the range of attack

vectors, classification, and threat classifiers of

identified threats, to provide a clear view of the

level of risk by priority. With the threat model,

researchers can prioritize testing and detailed

evaluation of functions that are important or at

high risk of being exploited.

Phase 5: Manual review and exploitation

Security researchers at CyStack directly evaluate

the source code using both static and dynamic

analysis methods. Static analysis means

that researchers directly read and identify

inappropriate pieces of code in the source

code. At the same time, the researchers perform

dynamic analysis, which means analyzing the

processes performed during the application’s

operation, as well as finding ways to exploit

the weaknesses previously found in the source

code. to come to a conclusion about the security

of the source code. Once the vulnerability is

discovered, the researchers will build the exploit

code and save it as exploit proof to exchange

and agree on a solution for the customer at a

later stage. The discovered critical vulnerabilities

will be notified to customers in time for early

patching.

Phase 6: Remediation proposal

Detected vulnerabilities are aggregated and

notified to customers. During this phase, security

researchers at CyStack will directly discuss with

the application developers team to come up with

a solution that best suits the application design

and development infrastructure. application

implementation, as well as customer needs,

principles and standards. The solution

can be temporary (mitigation) or definitive

(remediation), depending on the specifics of the

application design and application deployment

system. Vulnerabilities will be prioritized by

severity to ensure maximum application security

in the product environment.

Phase 7: Reporting

After completing every security assessment for

the application source code, CyStack will send a

final report to the customer. The report includes

an executive summary of audit results and

detailed descriptions of found vulnerabilities.

© 2022 CyStack. All rights reserved. 8

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Dashboard

Maintaining a healthy security posture requires constant review and refinement of existing security

processes. Running a CyStack Security Audit allows Busy Technology s.r.o.’s internal security team to

not only uncover specific vulnerabilities but gain a better understanding of the current security threat

landscape.

Vulnerabilities by severities

2

Legend

Critical

High

Medium

Low

Info

Vulnerabilities by assets

BusyChaincode 2

Vulnerabilities by CWE

Injection (CWE-929) 2

Table of vulnerabilities

ID Status Vulnerability Severity

#busytech-003 Fixed
Missing input validation for the variable token in

the function busyVoting:CreatePool
LOW

#busytech-004 Fixed
Missing input validation for the variable token in

the function busyVoting:CreateVote
LOW

© 2022 CyStack. All rights reserved. 9

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Recommendations

Based on the results of this assessment, CyStack has the following high-level key recommendations:

Key recommendations

Issues

After the source code review for the four repositories BusyAPI,

BusyChaincode, BusyEvents and BusyNetwork of the Busy Technology

project, CyStack confirmed that Busy Technology is a well designed

blockchain platform. No issues higher than Low have been found. Only two

issues found related to missing input validation, but their impacts are all

Low. These issues were all resolved by Busy Technology.

Recommendations

• Identify similar patterns of unsafe code according to the reported

issues.

• Evaluate the audit results with several different security audit

third-parties for the most accurate conclusion.

References

• https://snyk.io/test/npm/fabric-client/1.4.20

• https://brightsec.com/blog/api-security/

• https://www.hyperledger.org/blog/2021/11/18/hyperledger-fabric-s

ecurity-threats-what-to-look-for

• https://arxiv.org/pdf/2109.03574.pdf

© 2022 CyStack. All rights reserved. 10

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Code Review Details

5.1 Steps to Conduct

CyStack analyzed the source code using a variety of static and dynamic analysis tools. Specifically,

CyStack:

1. Statically analyzed the repository BusyAPI, BusyChaincode and BusyEvents with codeql and

snyk. The results is shown in the following section Results.

2. Deployed BusyNetwork following the installation guidance in README.md.

3. Dynamically analyzedBusyAPI andBusyChaincodewhen runningBusyNetworkwith Burp Suite.

4. Manually reviewed the codeof BusyAPI, BusyChaincodeandBusyEventswith IDEs anddebuggers.

Built test case for each function in Busy Technology project. CyStack firstly focused on if any

unsafe functions were used, then checked on the business logic of important mechanism such

as signature verification, authorization, data validation, etc. The results is shown in the following

section and found vulnerabilities will be reported in Vulnerability Details.

5.2 Results

5.2.1 Overview on Busy Technology system

Architecture and business flows

In this audit project, CyStack focuses on finding vulnerabilities in the four repositories under the Busy

Technology project: BusyAPI, BusyChaincode, BusyEvents and BusyNetwork.

BusyAPI is written in Node.js and will be deployed as a docker container. It performs interactions

between client applications and the BusyChaincode. The business flow of BusyAPI is illustrated in the

following graph:

© 2022 CyStack. All rights reserved. 11

https://codeql.github.com/
https://snyk.io/

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

BusyChaincode is the core of Busy Technology. It is developed with Hyperledger Fabric framework,

which is a platform for distributed ledger solutions, underpinnedby amodular architecture delivering

high degrees of confidentiality, resiliency, flexibility and scalability. BusyChaincode is written in Go.

BusyChaincode contains 5mainprograms, which couldbeunderstoodas smart contracts inHyperledger:

Busy.go, BusyToken.go, BusyNFT.go, BusyMessenger.go andBusyVoting.go. Functions in theseprogram

are listed below:

1. Busy.go

• Init (Only Admin)

• CreateUser

• CreateStakingAddress

• GetBalance

• GetUser

• GetTokenIssueFee

• SetTokenIssueFee (Only Admin)

• IssueToken

• Transfer

• GetTotalSupply

• Burn

• MultibeneficiaryVestingV1 (Only Admin)

• MultibeneficiaryVestingV2 (Only Admin)

• GetLockedTokens

• AttemptUnlock

• UpdateTransferFee (Only Admin)

• GetTokenDetails

• GetStakingInfo

• Claim

© 2022 CyStack. All rights reserved. 12

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

• ClaimAll

• FetchStakingAddress (Only Admin)

• Unstake

• GetCurrentPhase

• GetCurrentFee

• GetBusyAddress (Only Admin)

• AuthenticateUser

2. BusyToken.go

• Mint

• MintBatch

• BurnBatch

• TransferFrom

• BatchTransferFrom

• IsApprovedForAll

• SetApprovalForAll

• BalanceOf

• BalanceOfBatch

• GetTokenInfo

• UpdateTokenMetaData

3. BusyNFT.go

• Mint

• Transfer

• GetCurrentOwner

• UpdateNFTMetaData

4. BusyMessenger.go

• SendMessage

• UpdateMessagingFee (Only Admin)

• GetMessagingFee (Only Admin)

5. BusyVoting.go

• CreatePool

• CreateVote

• DestroyPool (Only Admin)

• QueryPool (Only Admin)

• PoolHistory

• PoolConfig

• UpdatePoolConfig (Only Admin)

BusyEvents handles transaction logging and tracking for future explorer web application.

BusyNetwork is a repository, which contains shell code for starting the network of Busy Technology

with peers and orderers.

© 2022 CyStack. All rights reserved. 13

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Access control

No issueswere found inBusyAPI access control. Roles andpermissions are reported andand confirmed

by Busy Technology s.r.o..

5.2.2 Static analysis

npm-audit andSnyk found24 vulnerabilities, including7 critical, 15 high and2medium in 677 scanned

packages during the first security audit.

CyStack proceeded a seucurity retest on Busy Technology system and confirmed that 20 issues

were resolvedbyBusyTechnology team. Only 4High issues remaindue to the versionofprotobufjs.

This problemcould not be solvedbecause thepackage fabric-clientdefined it as a fixeddependency.

5.2.3 Manual reviews

The project Busy Technology is developed with good coding and security practices. No issues with

severity higher than Lowhavebeen found. These issues aremostly related tomissingof input validation.

All of the issues are described in details in next section - Vulnerabilities Details.

© 2022 CyStack. All rights reserved. 14

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Vulnerability Details

1. Missing input validation for the variable token in the function
busyVoting:CreatePool

ID #busytech-003

Category CWE-929 - Injection

Description

In the function CreatePool, parameter token is not validated before

it is passed to burnCoins function. This leads to incorrect behaviors

in function addTotalSupplyUTXO in the function burnCoins. If the

burnt tokens are not BUSY, BUSY tokens are still burnt by the function

ctx.GetStub().PutState() called in burnCoins, but the total supply

of token reduces instead. The function burnCoins works correctly

only when the input value of token is the same as the value of

BUSY_COIN_SYMBOL.

Severity LOW

CVSS 3.0 base score CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:C/C:N/I:L/A:L (3.9)

Target BusyChaincode/busyVoting.go:98

Status Fixed

Remediation

Check if the value of the variable token equals to the value of

BUSY_COIN_SYMBOL before executing the function burnCoins

in the function CreatePool. Else, use the hardcoded value

BUSY_COIN_SYMBOL instead of using the parameter token in the

function CreatePool.

Step to reproduce

The codelines where the issue occurs:

…
18 func (bv *BusyVoting) CreatePool(ctx contractapi.TransactionContextInterface, walletid

string, PoolName string, PoolDescription string, token string) (*Response, error)
{

↪→

↪→

…
… err = burnCoins(ctx, defaultAddress, votingConfig.PoolFee, token)
…

154 }
155

© 2022 CyStack. All rights reserved. 15

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

From the line 439 to 446 in the function burnCoins, we can tell that the state is updated correctly only

when the value of token equals to BUSY_COIN_SYMBOL:

…
431 func burnCoins(ctx contractapi.TransactionContextInterface, address string, coins

string, token string) error {↪→

432 minusOne, _ := new(big.Int).SetString("-1", 10)
433 bigTxFee, _ := new(big.Int).SetString(coins, 10)
434 err := addTotalSupplyUTXO(ctx, token, new(big.Int).Set(bigTxFee).Mul(minusOne,

bigTxFee))↪→

435 if err != nil {
436 return err
437 }
438
439 utxo := UTXO{
440 DocType: "utxo",
441 Address: address,
442 Amount: bigTxFee.Mul(bigTxFee, minusOne).String(),
443 Token: BUSY_COIN_SYMBOL,
444 }
445 utxoAsBytes, _ := json.Marshal(utxo)
446 err = ctx.GetStub().PutState(fmt.Sprintf("voting~%s~%s~%s",

ctx.GetStub().GetTxID(), address, BUSY_COIN_SYMBOL), utxoAsBytes)↪→

447 if err != nil {
448 return err
449 }
450 return nil
451 }
…

© 2022 CyStack. All rights reserved. 16

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

2. Missing input validation for the variable token in the function
busyVoting:CreateVote

ID #busytech-004

Category CWE-929 - Injection

Description

In the function CreateVote, parameter token is not validated before

it is passed to burnCoins function. This leads to incorrect behaviors

in function addTotalSupplyUTXO in the function burnCoins. If the

burnt tokens are not BUSY, BUSY tokens are still burnt by the function

ctx.GetStub().PutState() called in burnCoins, but the total supply

of token reduces instead. The function burnCoins works correctly

only when the input value of token is the same as the value of

BUSY_COIN_SYMBOL.

Severity LOW

CVSS 3.0 base score CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:C/C:N/I:L/A:L (3.9)

Target BusyChaincode/busyVoting.go:245

Status Fixed

Remediation

Check if the value of the variable token equals to the value of

BUSY_COIN_SYMBOL before executing the function burnCoins

in the function CreateVote. Else, use the hardcoded value

BUSY_COIN_SYMBOL instead of using the parameter token in the

function CreateVote.

Step to reproduce

The codelines where the issue occurs:

…
155 func (bv *BusyVoting) CreateVote(ctx contractapi.TransactionContextInterface, walletid

string, votingaddress string, amount string, voteType string, token string)
(*Response, error) {

↪→

↪→

…
245 err = burnCoins(ctx, defaultAddress, amount, token)
…

317 }
…

© 2022 CyStack. All rights reserved. 17

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

From the line 439 to 446 in the function burnCoins, we can tell that the state is updated correctly only

when the value of token equals to BUSY_COIN_SYMBOL:

…
431 func burnCoins(ctx contractapi.TransactionContextInterface, address string, coins

string, token string) error {↪→

432 minusOne, _ := new(big.Int).SetString("-1", 10)
433 bigTxFee, _ := new(big.Int).SetString(coins, 10)
434 err := addTotalSupplyUTXO(ctx, token, new(big.Int).Set(bigTxFee).Mul(minusOne,

bigTxFee))↪→

435 if err != nil {
436 return err
437 }
438
439 utxo := UTXO{
440 DocType: "utxo",
441 Address: address,
442 Amount: bigTxFee.Mul(bigTxFee, minusOne).String(),
443 Token: BUSY_COIN_SYMBOL,
444 }
445 utxoAsBytes, _ := json.Marshal(utxo)
446 err = ctx.GetStub().PutState(fmt.Sprintf("voting~%s~%s~%s",

ctx.GetStub().GetTxID(), address, BUSY_COIN_SYMBOL), utxoAsBytes)↪→

447 if err != nil {
448 return err
449 }
450 return nil
451 }
…

© 2022 CyStack. All rights reserved. 18

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Appendix

Appendix A – Vulnerability Severity Ratings

Severity
CVSS 3.0

score range
Definition

CRITICAL 9.0-10.0

Exploitation is straightforward and usually results in

system-level compromise.

It is advised to form a plan of action and patch immediately.

HIGH 7.0-8.9

Exploitation is more difficult but could cause elevated

privileges and potentially a loss of data or downtime.

It is advised to form a plan of action and patch as soon as

possible.

MEDIUM 4.0-6.9

Vulnerabilities exist but are not exploitable or require extra

steps such as social engineering.

It is advised to form a plan of action and patch after

high-priority issues have been resolved.

LOW 0.1-3.9

Vulnerabilities are non-exploitable but would reduce an

organization’s attack surface.

It is advised to form a plan of action and patch during the

next maintenance window.

INFO N/A

No vulnerability exists. Additional information is provided

regarding items noticed during testing, strong controls,

and additional documentation.

© 2022 CyStack. All rights reserved. 19

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Appendix B – Vulnerability Categories

CyStack uses CWE (Common Weakness Enumeration) for the vulnerability categorization. Common

Weakness Enumeration (CWE) is a community-developed list of common software securityweaknesses.

It serves as a common language, a measuring stick for software security tools, and as a baseline for

weakness identification, mitigation, and prevention efforts.

CWE categories used by CyStack are listed in the following table:

CWE ID Name

CWE-16 Security Misconfiguration

CWE-77, CWE-259 Insecure OS Firmware

CWE-79 Cross-Site Scripting (XSS)

CWE-310 Broken Cryptography

CWE-311, CWE-319 Insecure Data Transport

CWE-352 Cross-Site Request Forgery (CSRF)

CWE-359 Privacy Concerns

CWE-400 Application Level Denial Of Service (DoS)

CWE-601 Unvalidated Redirects And Forwards

CWE-693 Lack Of Binary Hardening

CWE-723 Broken Access Control

CWE-729, CWE-922 Insecure Data Storage

CWE-919 Mobile Security Misconfiguration

CWE-929 Injection

CWE-930 Broken Authentication And Session Management

CWE-934 Sensitive Data Exposure

CWE-937 Using Components With Known Vulnerabilities

© 2022 CyStack. All rights reserved. 20

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

Appendix C – Security Assessment For Source Code Review

Test ID Test name Status

SCR_CONF Configuration and Deploy Management Testing Pass

SCR_CONF_1 Test Network Infrastructure Configuration Pass

SCR_CONF_2 Test Application Platform Configuration Pass

SCR_CONF_3 Test File Extensions Handling for Sensitive Information N/A

SCR_CONF_4 Test HTTP Methods Pass

SCR_CONF_5 Test HTTP Strict Transport Security Pass

SCR_CONF_6 Test File Permission Pass

SCR_IDNT Identity Management Testing Pass

SCR_IDNT_1 Test Role Definitions Pass

SCR_IDNT_2 Test User Registration Process N/A

SCR_IDNT_3 Test Account Provisioning Process N/A

SCR_ATHN Authentication Testing Pass

SCR_ATHN_1 Testing for Credentials Transported over an Encrypted Channel Pass

SCR_ATHN_2 Testing for Default Credentials N/A

SCR_ATHN_3 Testing for Weak Lock Out Mechanism N/A

SCR_ATHN_4 Testing for Bypassing Authentication Schema Pass

SCR_ATHN_5 Testing for Weak Password Policy N/A

SCR_ATHN_6 Testing for Weak Password Change or Reset Functionalities N/A

SCR_ATHN_7 Testing for Weaker Authentication in Alternative Channel Pass

SCR_ATHZ Authorization Testing Pass

SCR_ATHZ_1 Testing Directory Traversal File Include Pass

SCR_ATHZ_2 Testing for Bypassing Authorization Schema Pass

SCR_ATHZ_3 Testing for Privilege Escalation Pass

SCR_SESS Session Management Testing Pass

SCR_SESS_1 Testing for Session Management Schema Pass

SCR_SESS_2 Testing for Session Fixation Pass

© 2022 CyStack. All rights reserved. 21

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

SCR_SESS_3 Testing for Exposed Session Variables Pass

SCR_SESS_4 Testing for Logout Functionality N/A

SCR_SESS_5 Testing Session Timeout Pass

SCR_SESS_6 Testing for Session Puzzling Pass

SCR_SESS_7 Testing for Session Hijacking Pass

SCR_INPV Input Validation Testing Pass

SCR_INPV_1 Testing for HTTP Verb Tampering Pass

SCR_INPV_2 Testing for HTTP Parameter pollution Pass

SCR_INPV_3 Testing for SQL Injection Pass

SCR_INPV_4 Testing for SSI Injection Pass

SCR_INPV_5 Testing for Code Injection Pass

SCR_INPV_6 Testing for Command Injection Pass

SCR_INPV_7 Testing for Format String Injection Pass

SCR_INPV_8 Testing for Incubated Vulnerabilities Pass

SCR_INPV_9 Testing for HTTP Splitting Smuggling Pass

SCR_INPV_10 Testing for HTTP Incoming Requests Pass

SCR_INPV_11 Testing for Host Header Injection Pass

SCR_ERRH Error Handling Pass

SCR_ERRH_1 Testing for Improper Error Handling Pass

SCR_CRYP Cryptography Pass

SCR_CRYP_1 Testing for Weak Transport Layer Security Pass

SCR_CRYP_2 Testing for Padding Oracle Pass

SCR_CRYP_3 Testing for Sensitive Information Sent Via Unencrypted Channels Pass

SCR_CRYP_4 Testing for Weak Encryption Pass

SCR_BUSL Business Logic Testing Pass

SCR_BUSL_1 Test Business Logic Data Validation Pass

SCR_BUSL_2 Test Ability to Forge Requests Pass

SCR_BUSL_3 Test Integrity Checks Pass

© 2022 CyStack. All rights reserved. 22

PUBLIC ACCESS CYBERSECURITY AUDIT REPORT

SCR_BUSL_4 Test for Process Timing Pass

SCR_BUSL_5 Test Number of Times a Function Can be Used Limits Pass

SCR_BUSL_6 Testing for the Circumvention of Work Flows Pass

SCR_BUSL_7 Test Defenses Against Application Misuse Pass

SCR_BUSL_8 Test Upload of Unexpected File Types Pass

SCR_BUSL_9 Test Upload of Malicious Files Pass

SCR_CLNT Client-side Testing Pass

SCR_CLNT_1 Testing for Client-side Resource Manipulation Pass

LEGEND

Pass: Requirement is applicable to thegiven source codeand implemented according tobest practices.

Fail: Requirement is applicable to the given source code but not fulfilled.

N/A: Requirement is not applicable to the given source code.

© 2022 CyStack. All rights reserved. 23

	Executive Summary
	Key Findings
	Limitations
	Assessment Components

	Methodology
	Dashboard
	Recommendations
	Code Review Details
	Steps to Conduct
	Results
	Overview on Busy Technology system
	Static analysis
	Manual reviews

	Vulnerability Details
	Appendix
	Appendix A – Vulnerability Severity Ratings
	Appendix B – Vulnerability Categories
	Appendix C – Security Assessment For Source Code Review

